A New Project API References

data_processing.sort module

data_processing.sort.insertion_sort.sortInsertionAsc(alist: list) None

Apply insertion sort in ascending order on a list

Parameters:

alist (list) – The list to be sorted

data_processing.sort.insertion_sort.sortInsertionDesc(alist: list) None

Apply insertion sort in decending order on a list

Parameters:

alist (list) – The list to be sorted

data_processing.sort.pigeonhole_sort.pigeonHoleSortAsc(alist: list, maxvalue: int = 160000)

Apply pigeon-hole sort in ascending order on a list

Parameters:
  • alist (list) – The list to be sorted

  • maxvalue (int, optional) – The maximum value in the list, defaults to 160000

data_processing.sort.selection_sort.sortSelectionAsc(alist: list) None

Apply selection sort in ascending order on a list

Parameters:

alist (list) – The list to be sorted

data_processing.sort.selection_sort.sortSelectionDesc(alist: list) None

Apply selection sort in decending order on a list

Parameters:

alist (list) – The list to be sorted

data_processing.structures module

class data_processing.structures.binary_tree_adt.BSTree

Bases: object

Models a binary search tree (BST)

countNodes() int

Returns the number of nodes in a binary search tree

Returns:

The number of nodes

Return type:

int

insert(key, data=None)

Insert a data as a node in this BST

Parameters:
  • key (any immutable type) – The key for the binary search tree

  • data (any, optional) – The payload, defaults to None

printInOrder()

Print the data in a binary search tree in in-order traveral

printInOrderReverse()

Print the data in a binary search tree in reverse in-order traveral

printPostOrder()

Print the data in a binary search tree in post-order traveral

printPreOrder()

Print the data in a binary search tree in pre-order traveral

searchKey(key)

Search for the node that contains the key in this BST

Parameters:

key (any immutable type) – The key for the binary search tree

Returns:

The node or None if not found

Return type:

any

treeHeight() int

Returns the height of a binary search tree

Returns:

The tree height

Return type:

int

class data_processing.structures.binary_tree_adt.Node(key, data=None)

Bases: object

Models a node in a binary search tree

countNodes() int

Returns the number of nodes in a binary search tree

Returns:

The number of nodes

Return type:

int

insert(key, data=None)

Insert data as a nodein the binary search tree

Parameters:
  • key (any immutable type) – The key for the binary search tree

  • data (any, optional) – The payload, defaults to None

printInOrder()

Print the data in a binary search tree in in-order traveral

printInOrderReverse()

Print the data in a binary search tree in reverse in-order traveral

printPostOrder()

Print the data in a binary search tree in post-order traveral

printPreOrder()

Print the data in a binary search tree in pre-order traveral

searchKey(key)

Search for data using the query key

Parameters:

key (any immutable type) – The key for the binary search tree

Returns:

The data or None if the key is not found

Return type:

any

treeHeight() int

Returns the height of a binary search tree

Returns:

The tree height

Return type:

int

class data_processing.structures.linked_list_adt.LinkedList

Bases: object

Models a linkdd list

delete(index: int)

Delete the node at a given index

Parameters:

index (int) – The index of the node to be deleted

Raises:

IndexError – The index is out of range

deleteNodeOfData(targetdata)

Delete the node containing the target data

Parameters:

targetdata (any) – The target data of which the node is to be deleted

insert(data)

Insert new data at the front of linked list

Parameters:

data (any) – The data to be inserted

insertEnd(data)

Insert new data at the end of linked list

Parameters:

data (any) – The data to be inserted

print()

Printing all nodes by traversal

class data_processing.structures.linked_list_adt.Node(data=None)

Bases: object

Models the node of a linked list

class data_processing.structures.queue.Queue

Bases: object

Models a FIFO queue

deQueue()

Remove the value at the front of the queue

Raises:

IndexError – The queue is empty

Returns:

The data removed at the front

Return type:

any

enQueue(value)

Add a value at the end of the queue

Parameters:

value (any) – The value to be added

isEmpty() bool

Returns True if the queue is empty

Returns:

True if the queue is empty

Return type:

bool

isFull() bool

Returns True if the queue is full

Returns:

True if the queue is full

Return type:

bool

print(sep=',')

Print the content of the queue

Parameters:

sep (str, optional) – The separating character between the values in the queue, defaults to ‘,’

class data_processing.structures.stack.Stack

Bases: object

Models a FILO stack

isEmpty() bool

Returns True if the queue is empty

Returns:

True if the queue is empty

Return type:

bool

isFull() bool

Returns True if the queue is full

Returns:

True if the queue is full

Return type:

bool

pop()

Remove the value on the top of the stack

Raises:

IndexError – The stack is empty

Returns:

The value at the top of the stack

Return type:

any

print(sep=',')

Print the content of the queue

Parameters:

sep (str, optional) – The separating character between the values in the queue, defaults to ‘,’

push(value)

Push the value on top of the stack

Parameters:

value (any) – The value to be pushed to the stack

tools module

tools.opencv_tools.compare_masks(mask1, mask2) float

Find the similarity of two marks

Parameters:
  • mask1 (np.array) – The first mark image for comparison

  • mask2 (np.array) – The second mark image for comparison

Returns:

The similarity score

Return type:

float

tools.opencv_tools.copy_and_pad(mask, row: int, col: int) numpy.array

Create a new image of shape (row, col) and copy the mask referenced at the center

Parameters:
  • mask (np.array) – The source mask image

  • row (int) – The number of rows in the new image

  • col (int) – The number of columns in the new image

Returns:

The new image

Return type:

np.array

tools.opencv_tools.extract_masked_points(image_mask, mask_value=255) set

Extracts masked location as a set

Args:

image_mask (nparray or cvimage): 2d nparray of integers mask_value (bool): the value representing the mask

Returns:

list: a list of points (tuples of (row, col)) of the mask

tools.opencv_tools.extract_region(seed, points)

Gather a connected region from the points of mask, starting from the seed

Args:

image_mask (nparray or cvimage): 2d nparray of integers mask_value (bool): the value representing the mask

Returns:

list: a list of points (tuples of (row, col)) of the mask

tools.opencv_tools.generate_neighbours(point)
Private: