A New Project API References
data_processing.sort module
- data_processing.sort.insertion_sort.sortInsertionAsc(alist: list) None
Apply insertion sort in ascending order on a list
- Parameters:
alist (list) – The list to be sorted
- data_processing.sort.insertion_sort.sortInsertionDesc(alist: list) None
Apply insertion sort in decending order on a list
- Parameters:
alist (list) – The list to be sorted
- data_processing.sort.pigeonhole_sort.pigeonHoleSortAsc(alist: list, maxvalue: int = 160000)
Apply pigeon-hole sort in ascending order on a list
- Parameters:
alist (list) – The list to be sorted
maxvalue (int, optional) – The maximum value in the list, defaults to 160000
- data_processing.sort.selection_sort.sortSelectionAsc(alist: list) None
Apply selection sort in ascending order on a list
- Parameters:
alist (list) – The list to be sorted
- data_processing.sort.selection_sort.sortSelectionDesc(alist: list) None
Apply selection sort in decending order on a list
- Parameters:
alist (list) – The list to be sorted
data_processing.structures module
- class data_processing.structures.binary_tree_adt.BSTree
Bases:
object
Models a binary search tree (BST)
- countNodes() int
Returns the number of nodes in a binary search tree
- Returns:
The number of nodes
- Return type:
int
- insert(key, data=None)
Insert a data as a node in this BST
- Parameters:
key (any immutable type) – The key for the binary search tree
data (any, optional) – The payload, defaults to None
- printInOrder()
Print the data in a binary search tree in in-order traveral
- printInOrderReverse()
Print the data in a binary search tree in reverse in-order traveral
- printPostOrder()
Print the data in a binary search tree in post-order traveral
- printPreOrder()
Print the data in a binary search tree in pre-order traveral
- searchKey(key)
Search for the node that contains the key in this BST
- Parameters:
key (any immutable type) – The key for the binary search tree
- Returns:
The node or None if not found
- Return type:
any
- treeHeight() int
Returns the height of a binary search tree
- Returns:
The tree height
- Return type:
int
- class data_processing.structures.binary_tree_adt.Node(key, data=None)
Bases:
object
Models a node in a binary search tree
- countNodes() int
Returns the number of nodes in a binary search tree
- Returns:
The number of nodes
- Return type:
int
- insert(key, data=None)
Insert data as a nodein the binary search tree
- Parameters:
key (any immutable type) – The key for the binary search tree
data (any, optional) – The payload, defaults to None
- printInOrder()
Print the data in a binary search tree in in-order traveral
- printInOrderReverse()
Print the data in a binary search tree in reverse in-order traveral
- printPostOrder()
Print the data in a binary search tree in post-order traveral
- printPreOrder()
Print the data in a binary search tree in pre-order traveral
- searchKey(key)
Search for data using the query key
- Parameters:
key (any immutable type) – The key for the binary search tree
- Returns:
The data or None if the key is not found
- Return type:
any
- treeHeight() int
Returns the height of a binary search tree
- Returns:
The tree height
- Return type:
int
- class data_processing.structures.linked_list_adt.LinkedList
Bases:
object
Models a linkdd list
- delete(index: int)
Delete the node at a given index
- Parameters:
index (int) – The index of the node to be deleted
- Raises:
IndexError – The index is out of range
- deleteNodeOfData(targetdata)
Delete the node containing the target data
- Parameters:
targetdata (any) – The target data of which the node is to be deleted
- insert(data)
Insert new data at the front of linked list
- Parameters:
data (any) – The data to be inserted
- insertEnd(data)
Insert new data at the end of linked list
- Parameters:
data (any) – The data to be inserted
- print()
Printing all nodes by traversal
- class data_processing.structures.linked_list_adt.Node(data=None)
Bases:
object
Models the node of a linked list
- class data_processing.structures.queue.Queue
Bases:
object
Models a FIFO queue
- deQueue()
Remove the value at the front of the queue
- Raises:
IndexError – The queue is empty
- Returns:
The data removed at the front
- Return type:
any
- enQueue(value)
Add a value at the end of the queue
- Parameters:
value (any) – The value to be added
- isEmpty() bool
Returns True if the queue is empty
- Returns:
True if the queue is empty
- Return type:
bool
- isFull() bool
Returns True if the queue is full
- Returns:
True if the queue is full
- Return type:
bool
- print(sep=',')
Print the content of the queue
- Parameters:
sep (str, optional) – The separating character between the values in the queue, defaults to ‘,’
- class data_processing.structures.stack.Stack
Bases:
object
Models a FILO stack
- isEmpty() bool
Returns True if the queue is empty
- Returns:
True if the queue is empty
- Return type:
bool
- isFull() bool
Returns True if the queue is full
- Returns:
True if the queue is full
- Return type:
bool
- pop()
Remove the value on the top of the stack
- Raises:
IndexError – The stack is empty
- Returns:
The value at the top of the stack
- Return type:
any
- print(sep=',')
Print the content of the queue
- Parameters:
sep (str, optional) – The separating character between the values in the queue, defaults to ‘,’
- push(value)
Push the value on top of the stack
- Parameters:
value (any) – The value to be pushed to the stack
tools module
- tools.opencv_tools.compare_masks(mask1, mask2) float
Find the similarity of two marks
- Parameters:
mask1 (np.array) – The first mark image for comparison
mask2 (np.array) – The second mark image for comparison
- Returns:
The similarity score
- Return type:
float
- tools.opencv_tools.copy_and_pad(mask, row: int, col: int) numpy.array
Create a new image of shape (row, col) and copy the mask referenced at the center
- Parameters:
mask (np.array) – The source mask image
row (int) – The number of rows in the new image
col (int) – The number of columns in the new image
- Returns:
The new image
- Return type:
np.array
- tools.opencv_tools.extract_masked_points(image_mask, mask_value=255) set
Extracts masked location as a set
- Args:
image_mask (nparray or cvimage): 2d nparray of integers mask_value (bool): the value representing the mask
- Returns:
list: a list of points (tuples of (row, col)) of the mask
- tools.opencv_tools.extract_region(seed, points)
Gather a connected region from the points of mask, starting from the seed
- Args:
image_mask (nparray or cvimage): 2d nparray of integers mask_value (bool): the value representing the mask
- Returns:
list: a list of points (tuples of (row, col)) of the mask
- tools.opencv_tools.generate_neighbours(point)
- Private: